SERIES WORKSHEET 1 SOLUTION SKETCHES

Note: These are not model solutions, but only sketches/hints towards solutions.

Problem 1. Decide whether the series converge absolutely, conditionally, or if they diverge.

(1)
$$\sum_{1}^{\infty} \frac{(2n)!}{(3n)!}$$
,

(2)
$$\sum_{n=0}^{\infty} \frac{n^{50}50^n}{n!}$$

(3)
$$\sum_{n=1}^{\infty} \frac{n^2}{(-3)^n}$$

(2)
$$\sum_{n=1}^{\infty} \frac{n^{50}50^n}{n!}$$
, (3) $\sum_{n=1}^{\infty} \frac{n^2}{(-3)^n}$, (4) $\sum_{n=1}^{\infty} \frac{10^n}{(n+3)4^{2n-1}}$,

(5)
$$\sum_{n=1}^{\infty} \frac{5^n}{3^n + 4^n}$$

(6)
$$\sum_{n=1}^{\infty} \frac{n!}{2^{n^2}}$$
,

(7)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\frac{5}{3}}}$$

(5)
$$\sum_{n=1}^{\infty} \frac{5^n}{3^n + 4^n}$$
, (6) $\sum_{n=1}^{\infty} \frac{n!}{2^{n^2}}$, (7) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\frac{5}{3}}}$, (8) $\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^{n^2}$,

(9)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n!}}$$

$$(10)\sum_{n=1}^{\infty}e^{-\sqrt{n}},$$

$$(9) \sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n!}}, \qquad (10) \sum_{n=1}^{\infty} e^{-\sqrt{n}}, \qquad (11) \sum_{n=1}^{\infty} \left(\frac{n^2}{e^n} - \frac{n^2}{1+n^3}\right), (12) \sum_{n=2}^{\infty} \frac{\cos(\pi n)}{\ln n},$$

$$(13)\sum_{n=1}^{\infty} \frac{1}{n^{1+\sin\frac{1}{n}}},$$

$$(14)\sum_{n=1}^{\infty}\sin(e^{-n})$$

$$(13) \sum_{n=1}^{\infty} \frac{1}{n^{1+\sin\frac{1}{n}}}, \qquad (14) \sum_{n=1}^{\infty} \sin(e^{-n}), \qquad (15) \sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{\ln(\ln n)}}}, \qquad (16) \sum_{n=1}^{\infty} e^{-(\ln n)^2},$$

$$(16)\sum_{n=1}^{\infty} e^{-(\ln n)^2}$$

Solution.

- (1) Converges absolutely. Apply ratio test.
- (2) Converges absolutely. Apply ratio test.
- (3) Converges absolutely. Apply ratio or root test.
- (4) Converges absolutely. Apply ratio or root test.
- (5) Diverges. Terms don't go to 0, alternatively apply ratio or root test.
- (6) Converges absolutely. Apply ratio test.
- (7) Converges absolutely. Taking absolute values of the summands gives p-series with $p = \frac{5}{3} > 1$.
- (8) Converges absolutely. Apply root test.
- (9) Diverges. Compare $\sqrt[n]{n!} \leq \sqrt[n]{n^n} = n$.
- (10) Converges. Apply integral test or compare with $\frac{1}{n^p}$ with any p > 1.
- (11) Diverges. First term gives convergent series, second term gives divergent series, then the whole series diverges.
- (12) Converges conditionally. Alternating test. To see the series does not converge absolutely use $\ln n < n$.

- (13) Diverges. Do limit comparison test with $\frac{1}{n}$.
- (14) Converges absolutely. Compare with e^{-n} .
- (15) Converges absolutely. Do limit comparison test with $\frac{1}{n \ln^2(n)}$. (This one was tricky!)
- (16) Converges absolutely. Do limit comparison test with $\frac{1}{n^p}$ for any p > 1.

Problem 2. Let $(a_n)_n, (b_n)_n$ be sequences of real numbers. Decide with justification (proof or counterexample) whether the statement is true:

(a) ? If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges and $(b_n)_n$ is bounded, then $\sum_{n=1}^{\infty} a_n b_n$ converges ?

(b) ? If
$$\sum_{n=1}^{\infty} a_n$$
, $\sum_{n=1}^{\infty} b_n$ both diverge, then so does $\sum_{n=1}^{\infty} a_n + b_n$?

(c) ? If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then the sequence $(na_n)_n$ is bounded ?

(d) ? If
$$a_n \ge 0$$
 for all n and $\sum_{n=1}^{\infty} a_n$ converges, then so does $\sum_{n=1}^{\infty} a_n^2$?

Solution.

(a) True. If $|b_n| \leq C$ for all n, then $|a_n b_n| \leq C |a_n|$, so $\sum_{n=1}^{\infty} |a_n b_n|$ converges by comparison, hence $\sum_{n=1}^{\infty} a_n b_n$ converges since it converges absolutely.

- (b) False. Take e.g. $a_n = 1, b_n = -1$ for all n.
- (c) False. Take e.g. $a_n = \frac{(-1)^n}{\sqrt{n}}$. (There are also examples with all $a_n \ge 0$. Find one!)
- (d) True. Since $\sum_{n=1}^{\infty} a_n$ converges, eventually $a_n \leq 1$. Then for those n we have $0 \leq a_n^2 \leq a_n$, so $\sum_{n=1}^{\infty} a_n^2$ converges by comparison.

Department of Mathematics, Evans Hall, University of California, Berkeley, CA 94720, USA Email address: leonard.tomczak@berkeley.edu